翻訳と辞書
Words near each other
・ Parity drive
・ Parity flag
・ Parity function
・ Parity game
・ Parity learning
・ Parity of a permutation
・ Parity of esteem
・ Parity of zero
・ Parity P
・ Parity plot
・ Parity price
・ Parity problem
・ Parity problem (sieve theory)
・ Parity product
・ Parity progression ratios
Parity-check matrix
・ Pariu cu viața
・ Pariu-ye Arab
・ Parium
・ Pariva Pranati
・ Parivaar (1987 film)
・ Parivach Zabandi Kayi
・ Parivar Vichora
・ Parivara
・ Parivartan
・ Parivartana
・ Parivartana (1975 film)
・ Parivarthanam
・ Parivaz
・ Pariveh


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Parity-check matrix : ウィキペディア英語版
Parity-check matrix
In coding theory, a parity-check matrix of a linear block code ''C'' is a matrix which describes the linear relations that the components of a codeword must satisfy. It can be used to decide whether a particular vector is a codeword and is also used in decoding algorithms.
==Definition==
Formally, a parity check matrix, ''H'' of a linear code ''C'' is a generator matrix of the dual code, ''C''. This means that a codeword c is in ''C ''if and only if the matrix-vector product (some authors〔for instance, 〕 would write this in an equivalent form, c''H'' = 0.)
The rows of a parity check matrix are the coefficients of the parity check equations. That is, they show how linear combinations of certain digits (components) of each codeword equal zero. For example, the parity check matrix
:H =
\left( 0&0&1&1\\
1&1&0&0
\end
\right
)
,
compactly represents the parity check equations,
:\begin c_3 + c_4 &= 0 \\ c_1 + c_2 &= 0 \end,
that must be satisfied for the vector (c_1, c_2, c_3, c_4) to be a codeword of ''C''.
From the definition of the parity-check matrix it directly follows the minimum distance of the code is the minimum number ''d'' such that every ''d'' columns of a parity-check matrix ''H'' are linearly independent while there exist ''d+1'' columns of ''H'' that are linearly dependent.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Parity-check matrix」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.